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Aerosol influences on climate and climate change

Earth’s energy balance and perturbations
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AEROSOL IN MEXICO CITY BASIN



AEROSOL IN MEXICO CITY BASIN

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.



CLOUD BRIGHTENING BY SHIP TRACKS
Satellite photo off California coast

Aerosols from ship emissions enhance reflectivity of marine stratus.



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

3210-1-2
Forcing, W m-2

CO2 CH4
CFCs

N2O
Long Lived

Greenhouse Gases

Greenhouse gas forcing is considered accurately known.
Gases are uniformly distributed; radiation transfer is well understood. 



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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HOW MUCH WARMING IS EXPECTED?

Equilibrium change
in global mean

surface temperature
= Climate

sensitivity × Forcing

∆T S F= ×

S is equilibrium sensitivity. Units: K/(W m-2)

Sensitivity is commonly expressed as “CO2 doubling
temperature”

∆T S F2 2× ×≡ ×

where F2× is the “CO2 doubling forcing” ca. 3.7 W m-2.



ESTIMATES OF EARTH’S CLIMATE SENSITIVITY
AND ASSOCIATED UNCERTAINTY

Major national and international assessments and current climate models
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Current estimates of Earth’s climate sensitivity are centered about a CO2
doubling temperature ∆T2× = 3 K, but with substantial uncertainty.

Range of sensitivities of current models roughly coincides with IPCC
“likely” range.



THE WARMING DISCREPANCY

For increases in CO2, CH4, N2O, and CFCs over the
industrial period

F = 2 6.  W m-2

Expected temperature increase:

∆ ∆T
F

F
Texp

.

.
= × = ×

×
×

2
2

2 6
3 7

3 K = 2.1 K

Observed temperature increase:

∆Tobs  K= 0 8.

How can we account for this warming discrepancy?
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WHY HASN’T EARTH WARMED
AS MUCH AS EXPECTED. . .

FROM FORCING BY LONG-LIVED
GREENHOUSE GASES?

• Uncertainty in greenhouse gas forcing.
• Countervailing natural cooling over the industrial

period.
• Lag in reaching thermal equilibrium.
• Countervailing cooling forcing by aerosols.
• Climate sensitivity lower than current estimates.
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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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ESTIMATES OF AEROSOL DIRECT FORCING
By linear model and by radiation transfer modeling
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Global average sulfate optical thickness is 0.03: 1 W m-2 cooling.

In continental U. S. typical aerosol optical thickness is 0.1:  3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH AT ARM SGP
Fifteen years of daily average 500 nm AOD in North Central Oklahoma

Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010

Green curve is LOWESS (locally weighted scatterplot smoothing) fit.



MONTHLY AVERAGE AEROSOL JUNE 1997
Polder radiometer on Adeos satellite

Optical Thickness τ
 λ = 865 nm

0 0.5

Ångström Exponent α

α τ λ= −d dln / ln

-0.2 1.2
Large Small
Particles Particles

Small particles are from
gas-to-particle conversion.



CLOUD ALBEDO AND FORCING CALCULATED FROM
MEASURED EFFECTIVE RADIUS AND LIQUID WATER PATH

North Central Oklahoma
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Cloud albedo is calculated for observed data and for average effective radius for each day.
Forcing is calculated for indicated conditions relative to October 26.



CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

3210-1-2
Forcing, W m-2

CO2 CH4
CFCs

N2O
Long Lived

Greenhouse Gases
Tropospheric

Aerosols
Direct
Effect

Cloud Albedo
Effect

Total Forcing

Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing. 



WHY HASN’T EARTH WARMED
AS MUCH AS EXPECTED. . .

FROM FORCING BY LONG-LIVED
GREENHOUSE GASES?

• Uncertainty in greenhouse gas forcing.
• Countervailing natural cooling over the industrial

period.
• Lag in reaching thermal equilibrium.
• Countervailing cooling forcing by aerosols.
• Climate sensitivity lower than current estimates.
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IMPLICATIONS
ALLOWABLE FUTURE CO2 EMISSIONS

How much fossil carbon can be burned and emitted into
the atmosphere (as CO2) without exceeding a given
threshold for “dangerous anthropogenic interference”
with the climate system?

Answer depends on target threshold and climate
sensitivity.

Premise of the calculation:

Forcings by LLGHG’s only; no aerosol forcing.

Result expressed as equivalent CO2.



ALLOWABLE FUTURE CO2 EMISSIONS
Dependence on ∆T2× for indicated values of maximum allowable

temperature increase above preindustrial
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future emissions range from ~35 years at present emission rate to
negative by like amount.
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APPROACHES TO
DETERMINING

CLIMATE SENSITIVITY
Climate models

Evaluate by performance on current climate

Evaluate by performance over instrumental record

Empirical

Sensitivity = Time constant/Heat Capacity

Paleo: ∆Temperature/∆Flux, paleo to present

Instrumental record ∆Temperature/(Forcing – Flux)

Satellite measmt.: [d(Forcing – Flux)/dTemperature]-1
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TOO ROSY A PICTURE?
Ensemble of 58 model runs with 14 global climate models
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19 IPCC AR4 Models

“ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

“ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.

IPCC AR4, 2007
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CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Nine coupled ocean-atmosphere models; two energy balance models
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Total forcing is linearly correlated with inverse sensitivities of the models.
Climate models with lower sensitivity (higher inverse sensitivity)

employed a greater total forcing.
Slope (0.8 K) is approximately equal to observed temperature change.

Models accurately reproduce known temperature change.
Greater total forcing is due to smaller (less negative) aerosol forcing.



APPROACHES TO
DETERMINING

CLIMATE SENSITIVITY
Climate models

Evaluate by performance on current climate

Evaluate by performance over instrumental record

Empirical

Sensitivity = Time constant/Heat Capacity

Paleo: ∆Temperature/∆Flux, paleo to present

Instrumental record ∆Temperature/(Forcing – Flux)

Satellite measmt.: [d(Forcing – Flux)/dTemperature]-1
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CLIMATE MODEL DETERMINATION
OF CLIMATE SENSITIVITY

Effect of uncertainty in forcing
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Uncertainty in aerosol forcing allows climate models with widely differing
sensitivities to reproduce temperature increase over industrial period.



SUMMING UP TO HERE

Climate sensitivity and aerosol forcing are intrinsically
coupled, in climate models and in empirical
determination of sensitivity.

Confident determination of climate sensitivity requires
great reduction in uncertainty in aerosol forcing
over the industrial period.



THE PATH FORWARD
Determine aerosol forcing with high accuracy.

Multiple approaches are required:

Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.

Evaluate models by comparison with observations.

Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS

water
uptake

precursor emissions

coagulation

evaporation
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formation

subcloud
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surface
chemistry

 dry
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autoconversion
light scattering

ƒ(RH)
and absorption

Radiation transfer in clouds

Modified from Ghan and Schwartz, Bull. Amer. Meterol. Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Isomorphism of processes to computer code
Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and 
incorporating these representations in global scale models.
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AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations

Kinne et al., ACP, 2006
Surface measurements: AERONET network.
Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?
Are the models getting the “right” answer because the answer is known?
Are the satellites getting the “right” answer because the answer is known?



SEA SALT AEROSOL MASS EMISSIONS
Annual average in AEROCOM models; 1012 kg yr-1
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Range of global annual mean is a factor of 50.



ORGANIC CONTRIBUTIONS TO TROPOSPHERIC
AEROSOL

Mass-spec determination of primary vs secondary organics

New analytical techniques permit identification of formation mechanisms.

Concentration
µg m-3



AEROSOL INTERACTIONS WITH MAJOR
ATMOSPHERIC CYCLES

Aerosol processes are central to research in the Department of Energy
Atmospheric System Research Program.



SECONDARY AEROSOL PRODUCTION
Eight aircraft flights above and downwind of Mexico City, March 2006

Age = - Log (NOx/NOy)
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Kleinman et al, ACP, 2008

Parcel photochemical age measured using - Log(NOx/NOy) as clock.
Aerosol normalized to CO above background to account for dilution.
Fivefold increase in organic aerosol.
Measured increase in organic aerosol exceeds modeled based on

laboratory experiments and measured volatile organic carbon tenfold.
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AEROSOL TRANSPORT AND EVOLUTION

Number fraction 
and number 

size 
distribution 

FLEXPART age 
and back trajectories

Mexico City, March 22, 2006

Moffet, Tivanski, Hopkins, Desyaterik, Fast, Barnard, Laskin, Gilles; PNNL, LBL
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Atmospheric Nucleation Event: 09/16/10
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NEW MEASUREMENTS YIELD NEW INSIGHTS
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CRITICAL SUPERSATURATION 
Dependence on particle size and composition 
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Particles above cloud layer showed greater increase in supersaturation 

than particles below cloud.  
Composition measured with PILS (particle into liquid sampler) showed 

high organic fraction in above cloud aerosol.  
Measurements with aerosol mass spectrometer showed organic material in 

CCN size range.  



Aerosol flow reactor in Finlayson-Pitts lab, UC Irvine
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PRODUCT CHARACTERIZATION IN NO            -PINENE REACTION3  −   α
IR spectroscopy

HPLC

Aerosol mass spectrometry
High-resolution AMS

Single Particle Laser Ablation Time-of-flight mass Spec (SPLAT)

Finlayson-Pitts, UC Irvine



AEROSOL PARTICLE NUMBER
CONCENTRATION

Average particle number concentrations North America, July 2004

Aitken mode particles (D ≤ 100 nm) Accumulation mode particles (D ≥ 100 nm)
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Chang, Schwartz, McGraw & Lewis, JGR, 2009

Strong dependence on new particle
formation mechanism

Strong dependence on size of
primary emissions

Accurate representation of number concentrations and aerosol indirect
effects requires improved knowledge of new particle formation rate
and size distributed emissions.
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THE PATH FORWARD
Determine aerosol forcing with high accuracy.

Multiple approaches are required:

Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.

Evaluate models by comparison with observations.

Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.

Measurement based determination of aerosol forcings.



~50 km

Drone

Radiometers
AMF

DIRECT DETERMINATION OF AEROSOL FORCINGS AT ARM SITES

Net SW and LW at TOA

3-D Characterization
of Aerosol and Cloud
Properties

Measurements 24-7-365

Characterization of 3-D
Cloud Properties by Radars, 
Tomography

ARM Central FacilityScanning
Cloud Radars

Sunphotometers



CONCLUDING OBSERVATIONS
• Radiative forcing by incremental greenhouse gases already in

the atmosphere could potentially lead to dangerous
interference with the climate system.

• Within present uncertainty of climate sensitivity, allowable
future emissions range from about –30 years to +30 years.

• Climate sensitivity must be known with much greater
accuracy for effective developing energy strategies.

• Atmospheric aerosols offset an unknown fraction of the
warming forcing of incremental greenhouse gases.

• The present uncertainty in aerosol forcing greatly limits
accuracy in determining climate sensitivity.

• Much fundamental aerosol research is essential and urgent.


